(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
active(inf(X)) → inf(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(length(X)) → length(active(X))
inf(mark(X)) → mark(inf(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
length(mark(X)) → mark(length(X))
proper(eq(X1, X2)) → eq(proper(X1), proper(X2))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(X)) → s(proper(X))
proper(false) → ok(false)
proper(inf(X)) → inf(proper(X))
proper(cons(any(X1), X2)) → cons(any(any(proper(X1))), any(proper(X2)))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(length(X)) → length(proper(X))
eq(ok(X1), ok(X2)) → ok(eq(X1, X2))
s(ok(X)) → ok(s(X))
inf(ok(X)) → ok(inf(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
any(X) → s(X)
any(proper(X)) → any(any(any(X)))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(eq(0', 0')) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0', X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0')
active(length(cons(X, L))) → mark(s(length(L)))
active(inf(X)) → inf(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(length(X)) → length(active(X))
inf(mark(X)) → mark(inf(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
length(mark(X)) → mark(length(X))
proper(eq(X1, X2)) → eq(proper(X1), proper(X2))
proper(0') → ok(0')
proper(true) → ok(true)
proper(s(X)) → s(proper(X))
proper(false) → ok(false)
proper(inf(X)) → inf(proper(X))
proper(cons(any(X1), X2)) → cons(any(any(proper(X1))), any(proper(X2)))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(length(X)) → length(proper(X))
eq(ok(X1), ok(X2)) → ok(eq(X1, X2))
s(ok(X)) → ok(s(X))
inf(ok(X)) → ok(inf(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
any(X) → s(X)
any(proper(X)) → any(any(any(X)))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
active(eq(0', 0')) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0', X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0')
active(length(cons(X, L))) → mark(s(length(L)))
active(inf(X)) → inf(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(length(X)) → length(active(X))
inf(mark(X)) → mark(inf(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
length(mark(X)) → mark(length(X))
proper(eq(X1, X2)) → eq(proper(X1), proper(X2))
proper(0') → ok(0')
proper(true) → ok(true)
proper(s(X)) → s(proper(X))
proper(false) → ok(false)
proper(inf(X)) → inf(proper(X))
proper(cons(any(X1), X2)) → cons(any(any(proper(X1))), any(proper(X2)))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(length(X)) → length(proper(X))
eq(ok(X1), ok(X2)) → ok(eq(X1, X2))
s(ok(X)) → ok(s(X))
inf(ok(X)) → ok(inf(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
any(X) → s(X)
any(proper(X)) → any(any(any(X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
eq,
cons,
inf,
s,
take,
length,
proper,
any,
topThey will be analysed ascendingly in the following order:
eq < active
cons < active
inf < active
s < active
take < active
length < active
active < top
eq < proper
cons < proper
inf < proper
s < proper
s < any
take < proper
length < proper
any < proper
proper < top
(6) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
eq, active, cons, inf, s, take, length, proper, any, top
They will be analysed ascendingly in the following order:
eq < active
cons < active
inf < active
s < active
take < active
length < active
active < top
eq < proper
cons < proper
inf < proper
s < proper
s < any
take < proper
length < proper
any < proper
proper < top
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol eq.
(8) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
cons, active, inf, s, take, length, proper, any, top
They will be analysed ascendingly in the following order:
cons < active
inf < active
s < active
take < active
length < active
active < top
cons < proper
inf < proper
s < proper
s < any
take < proper
length < proper
any < proper
proper < top
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cons.
(10) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
inf, active, s, take, length, proper, any, top
They will be analysed ascendingly in the following order:
inf < active
s < active
take < active
length < active
active < top
inf < proper
s < proper
s < any
take < proper
length < proper
any < proper
proper < top
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inf(
gen_0':true:mark:false:nil:ok3_0(
+(
1,
n19_0))) →
*4_0, rt ∈ Ω(n19
0)
Induction Base:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, 0)))
Induction Step:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, +(n19_0, 1)))) →RΩ(1)
mark(inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
s, active, take, length, proper, any, top
They will be analysed ascendingly in the following order:
s < active
take < active
length < active
active < top
s < proper
s < any
take < proper
length < proper
any < proper
proper < top
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol s.
(15) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
take, active, length, proper, any, top
They will be analysed ascendingly in the following order:
take < active
length < active
active < top
take < proper
length < proper
any < proper
proper < top
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
take(
gen_0':true:mark:false:nil:ok3_0(
+(
1,
n401_0)),
gen_0':true:mark:false:nil:ok3_0(
b)) →
*4_0, rt ∈ Ω(n401
0)
Induction Base:
take(gen_0':true:mark:false:nil:ok3_0(+(1, 0)), gen_0':true:mark:false:nil:ok3_0(b))
Induction Step:
take(gen_0':true:mark:false:nil:ok3_0(+(1, +(n401_0, 1))), gen_0':true:mark:false:nil:ok3_0(b)) →RΩ(1)
mark(take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n4010)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
length, active, proper, any, top
They will be analysed ascendingly in the following order:
length < active
active < top
length < proper
any < proper
proper < top
(19) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
length(
gen_0':true:mark:false:nil:ok3_0(
+(
1,
n1775_0))) →
*4_0, rt ∈ Ω(n1775
0)
Induction Base:
length(gen_0':true:mark:false:nil:ok3_0(+(1, 0)))
Induction Step:
length(gen_0':true:mark:false:nil:ok3_0(+(1, +(n1775_0, 1)))) →RΩ(1)
mark(length(gen_0':true:mark:false:nil:ok3_0(+(1, n1775_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(20) Complex Obligation (BEST)
(21) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n4010)
length(gen_0':true:mark:false:nil:ok3_0(+(1, n1775_0))) → *4_0, rt ∈ Ω(n17750)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
active, proper, any, top
They will be analysed ascendingly in the following order:
active < top
any < proper
proper < top
(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(23) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n4010)
length(gen_0':true:mark:false:nil:ok3_0(+(1, n1775_0))) → *4_0, rt ∈ Ω(n17750)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
any, proper, top
They will be analysed ascendingly in the following order:
any < proper
proper < top
(24) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol any.
(25) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n4010)
length(gen_0':true:mark:false:nil:ok3_0(+(1, n1775_0))) → *4_0, rt ∈ Ω(n17750)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
proper, top
They will be analysed ascendingly in the following order:
proper < top
(26) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol proper.
(27) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n4010)
length(gen_0':true:mark:false:nil:ok3_0(+(1, n1775_0))) → *4_0, rt ∈ Ω(n17750)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
The following defined symbols remain to be analysed:
top
(28) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(29) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n4010)
length(gen_0':true:mark:false:nil:ok3_0(+(1, n1775_0))) → *4_0, rt ∈ Ω(n17750)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
(31) BOUNDS(n^1, INF)
(32) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n4010)
length(gen_0':true:mark:false:nil:ok3_0(+(1, n1775_0))) → *4_0, rt ∈ Ω(n17750)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
(34) BOUNDS(n^1, INF)
(35) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
take(gen_0':true:mark:false:nil:ok3_0(+(1, n401_0)), gen_0':true:mark:false:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n4010)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
No more defined symbols left to analyse.
(36) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
(37) BOUNDS(n^1, INF)
(38) Obligation:
TRS:
Rules:
active(
eq(
0',
0')) →
mark(
true)
active(
eq(
s(
X),
s(
Y))) →
mark(
eq(
X,
Y))
active(
eq(
X,
Y)) →
mark(
false)
active(
inf(
X)) →
mark(
cons(
X,
inf(
s(
X))))
active(
take(
0',
X)) →
mark(
nil)
active(
take(
s(
X),
cons(
Y,
L))) →
mark(
cons(
Y,
take(
X,
L)))
active(
length(
nil)) →
mark(
0')
active(
length(
cons(
X,
L))) →
mark(
s(
length(
L)))
active(
inf(
X)) →
inf(
active(
X))
active(
take(
X1,
X2)) →
take(
active(
X1),
X2)
active(
take(
X1,
X2)) →
take(
X1,
active(
X2))
active(
length(
X)) →
length(
active(
X))
inf(
mark(
X)) →
mark(
inf(
X))
take(
mark(
X1),
X2) →
mark(
take(
X1,
X2))
take(
X1,
mark(
X2)) →
mark(
take(
X1,
X2))
length(
mark(
X)) →
mark(
length(
X))
proper(
eq(
X1,
X2)) →
eq(
proper(
X1),
proper(
X2))
proper(
0') →
ok(
0')
proper(
true) →
ok(
true)
proper(
s(
X)) →
s(
proper(
X))
proper(
false) →
ok(
false)
proper(
inf(
X)) →
inf(
proper(
X))
proper(
cons(
any(
X1),
X2)) →
cons(
any(
any(
proper(
X1))),
any(
proper(
X2)))
proper(
take(
X1,
X2)) →
take(
proper(
X1),
proper(
X2))
proper(
nil) →
ok(
nil)
proper(
length(
X)) →
length(
proper(
X))
eq(
ok(
X1),
ok(
X2)) →
ok(
eq(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
inf(
ok(
X)) →
ok(
inf(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
take(
ok(
X1),
ok(
X2)) →
ok(
take(
X1,
X2))
length(
ok(
X)) →
ok(
length(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
any(
X) →
s(
X)
any(
proper(
X)) →
any(
any(
any(
X)))
Types:
active :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
eq :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
0' :: 0':true:mark:false:nil:ok
mark :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
true :: 0':true:mark:false:nil:ok
s :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
false :: 0':true:mark:false:nil:ok
inf :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
cons :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
take :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
nil :: 0':true:mark:false:nil:ok
length :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
proper :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
ok :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
any :: 0':true:mark:false:nil:ok → 0':true:mark:false:nil:ok
top :: 0':true:mark:false:nil:ok → top
hole_0':true:mark:false:nil:ok1_0 :: 0':true:mark:false:nil:ok
hole_top2_0 :: top
gen_0':true:mark:false:nil:ok3_0 :: Nat → 0':true:mark:false:nil:ok
Lemmas:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
Generator Equations:
gen_0':true:mark:false:nil:ok3_0(0) ⇔ 0'
gen_0':true:mark:false:nil:ok3_0(+(x, 1)) ⇔ mark(gen_0':true:mark:false:nil:ok3_0(x))
No more defined symbols left to analyse.
(39) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inf(gen_0':true:mark:false:nil:ok3_0(+(1, n19_0))) → *4_0, rt ∈ Ω(n190)
(40) BOUNDS(n^1, INF)